Ideal-Gas Heat Capacities of HFC Refrigerants Determined from Gaseous Speed-of-Sound Measurements

K. Ogawa and H. Sato
Department of System Design Engineering
Faculty of Science and Technology
Keio University
3-14-1, Hiyoshi, Kohoku-ku
Yokohama 223-8522, Japan

The $c_p^{\ 0}$ value is often estimated and calculated by means of a theoretical method with spectroscopic data. On the other hand, $c_p^{\ 0}$ values can be determined from speed-of-sound measurements. More than ten years ago, there existed only theoretically calculated $c_p^{\ 0}$ values. In the past decade, the $c_p^{\ 0}$ values based on speed-of-sound measurements have begun to be reported.. The experimental $c_p^{\ 0}$ values, unfortunately, do not completely agree with theoretical values, e.g., these discrepancies reached 0.6%, 0.5%, 1.0%, 2.0% and 0.8% for the HFC refrigerants R-32, R-152a, R-143a, R-134a, and R-125, respectively..

Yokozeki et al. recently re-evaluated these c_p^0 values theoretically in detail to resolve this problem in cooperation with our study of gaseous speed-of-sound measurements. In this process, he had checked or corrected all chemical properties at each step to derive the c_p^0 values for HFCs. On the other hand, we strictly examined our speed-of-sound measurements for R-32, R-152a, R-143a, R-134a, and R-125 in this study.

Concerning R-125 and R-143a, we re-measured the speed of sound and re-determined the $c_p^{\ 0}$ values which were different from previous results by as much as-1%. By the results of new measurements and re-evaluation of Yokozeki *et al.*, the discrepancies between theoretical and experimental $c_p^{\ 0}$ values vanished.

As a result of our study, we propose a new temperature function of $c_p^{\ 0}$ for each HFC which is effective in temperature range of 200 K - 500 K and evaluate the uncertainties of the calculated results.